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Abstract: Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the
complex, dynamic ecosystems that house our natural resources and control our environments.
Human behaviour affects the ways in which the science of IEM is assembled and used for mean-
ingful societal applications. In particular, human biases and heuristics reflect adaptation and
experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately,
human behaviour is not adapted to the more diffusely experienced problems that IEM typically
seeks to address. Twelve biases are identified that affect IEM (and science in general). These
biases are supported by personal observations and by the findings of behavioural scientists. A
process for critical analysis is proposed that addresses some human challenges of IEM and solicits
explicit description of (1) represented processes and information, (2) unrepresented processes and
information, and (3) accounting for, and cognizance of, potential human biases. Several other sug-
gestions are also made that generally complement maintaining attitudes of watchful humility,
open-mindedness, honesty and transparent accountability. These suggestions include (1) creating
a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging
the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience
of IEM constructs and use.
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The experiences and education that scientists
receive invariably affect their perspectives and cre-
ate bias. Sarewitz (2004, p. 392) states this reality
well in his provocative article on ‘How science
makes environmental controversies worse’:

Even the most apparently apolitical, disinterested sci-
entist may, by virtue of disciplinary orientation, view
the world in a way that is more amenable to some value
systems than others. That is, disciplinary perspective
itself can be viewed as a sort of conflict of interest
that can never be evaded.

Indeed, Sarewitz (2004) argues that the very act of
making choices, and of being sentient human beings,
force humans to acquire bias. Scientists and num-
erical modellers cannot escape this reality. At best,
they can try to acknowledge and examine their
sources of bias.

After an introduction to the author’s experiential
biases and professional background, this paper
will discuss the needs and use of Integrated En-
vironmental Modelling (IEM) for the improved
management of society’s natural resources and
environments. [Our definition of natural resources
includes all resources provided by nature, regardless
of their biologic, geologic, hydrologic, or atmos-
pheric origins or characteristics.] Following sect-
ions will consider the balance between: (1) the

inherent complexity of the integrated transdis-
ciplinary numerical models and tools of IEM, and
(2) the simplifications that are required for effective
human construction and use of IEM, and that often
reflect, or are influenced by, human limitations,
biases and heuristics. Several of these human
biases and heuristics will be individually recogni-
zed and examined. A reference frame, ‘the eye of
reality’, will also be introduced that may be useful
in thinking about and classifying our human
pursuit of knowledge, while keeping in mind our
human biases and our related creative intuitions.
Lastly, the paper will suggest some ideas and
approaches that may help address IEM’s ‘human
challenges’, that is, those distinctly human chal-
lenges that we need to recognize and overcome to
effectively use IEM. Human biases and heuristics
are a large part of these challenges.

Some personal experiences and biases

Many of my own biases were formed through my
management experiences gained while directing a
hydrology research group within the US Geologi-
cal Survey, and proposing new science directions,
for example, in the areas of groundwater stud-
ies (Glynn & Plummer 2005; Konikow & Glynn
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2013; Plummer & Glynn 2013; Plummer et al.
2013), small watershed-basin research and monitor-
ing (Glynn et al. 2009), 3D and 4D modelling and
visualization (Glynn et al. 2011; Jacobsen et al.
2011; Pantea et al. 2013), and most recently in the
domain of the behavioural biogeosciences (Glynn
2014). My perspectives were also formed through
some of my research experiences:

(1) modelling, and attempting to predict, the reac-
tive transport of acidic heavy-metal contami-
nation in groundwaters of the Pinal Creek
Basin in Arizona;

(2) providing geochemical understanding, and
scenario and process modelling of oxygen and
radionuclide reactive transport in support of
performance assessments for high-level nu-
clear waste disposal in the Fennoscandian
Shield in Sweden.

The experiences discussed in this section show the
development of my appreciation for the need to
more fully consider nature’s complexities, as well
as the inevitable surprises that nature invariably pro-
vides that diminish our hubris as modellers. The sur-
prises and experiences generated a personal set of
experiential biases, a set that overlies more innate
biases, some of which will be described in later
sections.

Combined inverse and forward modelling to

assess and reduce knowledge gaps

Glynn & Brown (1996, 2012) used inverse geo-
chemical modelling to deduce the possible sets of
reactions that were affecting the chemical evolution
of contaminated groundwater at the Pinal Creek site.
[Inverse modelling uses observations and data to
infer, past or current, process and system infor-
mation. In contrast, forward modelling assumes
process information and a set of initial system con-
ditions and system parameters to predict a future
state, see Glynn & Brown (1996, 2012).] The
authors also conducted forward reactive transport
modelling, using the possible sets of reaction pro-
cesses obtained through inverse modelling, to
examine the resulting migration speed and sequen-
cing of contaminant fronts at the site. They com-
pared these results to the migration of fronts
observed at the site, which helped further constrain
the sets of potential reaction processes and associ-
ated geochemical conditions that applied to the
site. Glynn & Brown’s (1996, 2012) integration of
inverse and forward geochemical modelling helped
determine the information that was critically needed
to further improve understanding of contaminant
transport at the site. The 1996 study provided a
basis for further field investigations and numerical

simulations of contaminant transport (Brown et al.
1998, 2000). These additional studies added fur-
ther understanding on the hydrodynamics, reaction
mechanisms, and kinetics controlling contaminant
transport at the site. They also led the authors to
design some in situ field experiments to further test
their knowledge (Brown & Glynn 2003). ‘Lessons
learned’ were: (1) modelling could be used to deter-
mine knowledge gaps and to guide field data collec-
tion and experiments, and (2) different modelling
approaches were highly informative when used
synergistically.

An early surprise

Nature provided a ‘Black Swan’ surprise (i.e. a
high-impact low-probability event, according to
Taleb 2007) at the Pinal Creek site, before the com-
pletion of the Glynn & Brown (1996) study. An
early assumption that the site had relatively steady
groundwater flow dynamics was revised in the
winter of 1993. Massive flooding over the course
of a few months during that winter resulted in
water table rises of up to 16 m and a complete reor-
ganization of the usually dry Pinal Creek channel
bed with up to 60 m of lateral bank erosion. Critical
wells that had been emplaced on the banks were
lost, and there was a sudden ‘cleanup’ or flushing
of about a third of the contaminated groundwater
system that completely dwarfed the pumping and
remediation efforts that had proceeded to date.
Site study designs, field investigations and model-
ling plans were changed by the 1993 event, as were
contaminant remediation plans. Key lesson: cata-
strophic geomorphic changes (and external forces)
can cause abrupt change to groundwater systems
and waylay the best-laid plans and the overly
narrow, overly static, perspectives of a groundwater
scientist, in this case myself.

A wrong prediction

Nature confounded one of the predictions made by
the Glynn & Brown (1996) study. Glynn & Brown
(1996) had predicted that pyrolusite (MnO2) that
had been carefully weighed and suspended in
research wells emplaced in the contaminant plume
would undergo reductive dissolution and loss of
material. Instead, the samples acquired mass. A
new reactive mechanism discovered through
careful laboratory experiments (Villinski et al.
2001) was found to best explain the observed gain
in mass (Brown & Glynn 2003). Key lesson: don’t
get too attached to your ‘predictions’.

Glynn & Brown (2012) provide a 15-year
retrospective on Glynn & Brown (1996) and later
studies conducted at the Pinal Creek site. Some of
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their key conclusions, pertinent to IEM, are pro-
vided below:

Constructing, analyzing and interpreting numerical
models, regardless of the type of model (hydrologic
vs. geochemical; inverse vs. forward), forces the
modeler(s), and hopefully the user(s) of the models,
to reexamine and revise their conceptual model and per-
ceptions of the available information. The modelling
process forces the modelers and users to assemble,
structure, transform, and assess a wide variety of infor-
mation . . . The studies conducted at the Pinal Creek site
illustrate the fact that nature always keeps surprises in
reserve for its observers and interpreters. Humility,
and frequent testing of assumptions, are needed in
modelling nature’s systems . . . Given our often limited
knowledge of natural systems, it behooves us to model
these systems by considering general system behavior
before interpreting, matching, and predicting specific
system behavior.

Long-term climate scenarios and performance

assessments for nuclear waste disposal

I gained experience relevant to IEM through my
work for a small interdisciplinary team of investi-
gators tasked by the Swedish Nuclear Power Inspec-
torate (SKI) to review extensive investigations
conducted by the Swedish Nuclear Fuel and Waste
Management Company (SKB) for the Äspö Hard-
Rock Laboratory (HRL). The Äspö HRL was stud-
ied to assess the potential performance of high-level
nuclear waste disposal at 500 m depth in the Fennos-
candian Shield. The SKB investigations involved
a large group of contractors (i.e. a few hundred)
who constructed climate scenarios and examined
the many factors that could affect the performance
of the waste disposal site over the next 120 000
years. The analyses and performance assessments
conducted by SKB were impressive and sophisti-
cated. Milankovich astronomical cycles were used
to construct a climate scenario that included the
occurrence of three glacial cycles over the next
120 000 years. During two of the cycles, a 2–
3 km-high ice sheet was expected to be present on
the landscape above the Äspö HRL site. SKB’s per-
formance assessments, at least initially, assumed
that geochemical conditions were going to remain
close to chemical steady state at repository depth.
The redox regime was assumed to remain relatively
constant: not sufficiently reducing, or sufficiently
oxidizing, to cause either sulphidic or oxidative cor-
rosion of the copper canisters used for waste dispo-
sal. In particular, a continuous absence of dissolved
oxygen in the groundwaters outside the repository
was assumed. Dissolved oxygen would have been
a problem because of (1) its potential corrosion of
the copper canisters and (2) its potential to mobilize
radionuclides such as those of U, Tc, Pu and Np,
should the nuclear waste become exposed to the

groundwaters. Key point: SKB performance assess-
ments were IEM constructs that considered both
external forcings and internal processes and were
detailed in their simulations of complexity.

Questioning a conceptual model: a small

independent team effort

SKI conducted its own performance assessments for
a deep repository for high-level waste disposal, the
SITE-94 project (Swedish Nuclear Power Inspecto-
rate 1997). The SKI effort was based on the devel-
opment of risk scenarios constructed after an
exhaustive identification of ‘features, events, and
processes’ that could potentially affect the integ-
rity of the disposal site and its ability to keep the
high-level nuclear waste products isolated from
the human-living environment. Relatively complex
and visually impressive 3D hydrodynamic model-
ling was conducted by both SKB and SKI for their
performance assessments and scenario building.
Nonetheless, the SITE-94 project showed (Glynn
& Voss 1999, Glynn et al. 1999) that a scenario
that assumed the presence of 2-3 km-high warm-
based ice sheets over the Äspö HRL could poten-
tially entail the relatively rapid transport of highly
oxygenated glacial meltwaters to 500 m depth,
because of the large head gradient and because of
low fracture porosity. Observations from the base
of the Greenland ice sheet suggested that dissolved
oxygen concentrations in the glacial meltwaters,
under the base of the ice sheet, could be as high
as four to five times the concentrations that would
normally be expected under equilibrium with the
atmosphere. This possibility disrupted the initial
SKB (and SKI) concept scenario of a stable redox
regime at repository depth. SKB mounted an exten-
sive research effort to evaluate this possibility.
Lesson learned: despite their sophistication, the
performance assessments initially left key assump-
tions unexamined; an independent team helped
point out potential problems.

Assuming constancy: a recurring problem

Additionally, I conducted numerical simulations
that investigated the conditions under which the
transport of radionuclides, such as those of Pu and
Np, might be reasonably modelled by assuming
constant partitioning of the radionuclides between
aqueous phases and solid surfaces. The results,
applicable to nuclear waste disposal in Sweden
(Glynn 2003) and also to radioactive waste at the
Idaho National Laboratory in the USA (Nimmo
et al. 2004; Rousseau et al. 2005), indicated that
constant partitioning was generally not a reasona-
ble assumption in simulating actinide transport in
geological media. Key point: humans (including
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scientists) are wired, often unreasonably, to seek
constancy and simplicity.

A summary of personal lessons

Several lessons resulted from my experiences asses-
sing contaminant transport and nuclear waste dis-
posal issues in Arizona, in Sweden, and later at the
Idaho National Laboratory. First, independent
analysis by small teams or individuals can be critical
in avoiding ‘groupthink’ (Janis 1972) in the devel-
opment of conceptual models or numerical models.
Second, there is no better way of using a model to
develop greater understanding of a system than to
obtain additional observations and information
(but this is not always possible). Third, it is important
to keep an open mind for the ‘Black Swan’ surprises
and (or) invalidation of assumptions that will invari-
ably occur. In summary, we have a natural tendency
to assume constancy, to simplify and to seek confir-
mation of our mental models. Those tendencies
can easily lead us into error when trying to model
complex, dynamic, systems. Indeed, we may con-
struct highly sophisticated, publicly impressive,
numerical models that can nonetheless incorporate
problematic simplifying assumptions or preconcep-
tions. When properly utilized, however, structured,
interdisciplinary, integrated modelling frameworks
may help reduce failures of our human imagina-
tion. They can help us organize our knowledge as
we gain information and understanding. They can
help us uncover process interplays or model sensi-
tivities not previously considered.

What is IEM?

According to Laniak et al. (2013, p. 4):

Integrated Environmental Modelling (IEM) is a disci-
pline [that] provides a science-based structure to
develop and organize multidisciplinary knowledge. It
provides a means to apply this knowledge to explain,
explore, and predict environmental-system response
to natural and human-induced stressors. By its very
nature, it breaks down research silos and brings scien-
tists from multiple disciplines together with decision
makers and other stakeholders to solve problems for
which the social, economic, and environmental con-
siderations are highly interdependent.

Moore et al. (2013) further state: ‘At its most basic
level, integrated modelling (IM) is about linking
computer models that simulate different processes
to help understand and predict how those processes
will interact in particular situations.’ The authors
add that IEM applies IM to the analysis of environ-
mental problems. The present paper takes a broader
view: IEM is needed not only for studies of environ-
mental systems, but also for studies of the natural

resources and of the human activities that are
linked to the state of natural and built environments.
Despite our innate tendency to do otherwise (Glynn
2014), use and management of natural resources
should be integrated, or at least considered, in the
simulation of environmental stresses.

Simulation of human activities, and there-
fore simulation of Coupled Human and Natural
Systems (CHANS), requires an understanding of
human behaviour, its drivers, commonalities and
range of variability in a diversity of social settings
(e.g. individual, family, communities, nations) and
for a wide range of spatial and temporal scales. My
educational and professional background creates a
bias towards consideration of biophysical proces-
ses above the simulation of human activities and
behaviours as might be done in CHANS modelling.
However, my claim here (also in Glynn 2014) is that
scientists, including behavioural scientists, often
do not consider how human biases and heuristics
affect human interactions with, and human study
of, natural resources and environments. This
paper focuses on human biases and heuristics that
affect the study of natural resources and environ-
ments, and therefore the construction and use of
IEM simulations – whether or not those simulations
also include human and social processes.

Processing integrated information: are

computers required?

Computers are not inherently required to construct
and use IEM. As individuals, we gather, process,
integrate, and act on information and beliefs, often
unconsciously. We construct and use a personal
form of IEM that is based on a diversity of cognitive
inputs, memories and reactions acquired from our
past experiences, ingrained social rituals, and innate
responses acquired from our evolutionary past.
When confronted by unusual events or situations
that are not in our experience base or in our genetic
code, we often ‘infer’ our responses or actions
through logical deduction, induction, or through
‘fuzzy’ analogies to other situations.

Computer models, and other structured and dis-
tributable information frameworks, however, can
help us share information and knowledge with other
people, and can potentially provide greater struc-
ture, traceability and accountability for the sources
of our knowledge, and ultimately for our actions.
In the past, communities and individuals used maps
as information frameworks and aids that could help
them quickly assess:

(1) the boundaries, locations, types and quantities
of resources and communities (e.g. the oldest
‘modern’ world atlas, the Theatrum Orbis Ter-
rarum by Abraham Ortelius, 1570);
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(2) the temporal trends in those resources and
(or) communities (e.g. Charles Minard’s
1869 flow map of Napoleon’s march through
Europe).

Maps have been, and still are, highly successful
information frameworks because of their portabil-
ity, their ability to convey a diversity of informa-
tion in a highly accessible manner, and because of
their ability to segregate information into different
levels: the user of a map does not necessarily need
to take in all the information presented in the map
at once. Instead, the user can choose to access only
some elements, while ignoring others, or leaving
other elements for a later, more detailed, assess-
ment. Usable simplicity and scalable visualization
is a feature of well-constructed maps.

We are now at a stage where the 2D structure of
maps, and often their lack of a temporal or dynamic
representation of information, are too restrictive.
New multi-dimensional, computer-based or web-
based, IEM tools are required to help us assess,
share and cooperatively use the vast amounts of
information that are often available. Proper use of
these tools requires consideration of IEM goals
and needs, and cognizance of the human challenges
and limitations that affect IEM (and much of modern
science).

Why is IEM needed? How can it be used?

IEM is needed to simulate complex, dynamic

systems with multiple processes at multiple

scale

Natural resources and both natural and built envi-
ronments are affected and linked by a complex
diversity of processes made dynamic through nat-
ural variability, climatic change, population ex-
pansion, human behaviour and land-use change.
Improved management of resources and environ-
ments requires improved understanding of these
complex, dynamic, systems. Tools and structured
processes are needed that can: (1) help forecast,
predict or explore potential system changes, (2)
inform policy actions and support decision making,
and (3) track impacts of policy actions (or of their
absence). IEM provides some new ways to investi-
gate connections, couplings and feedbacks that
generally would not be explored in traditional
discipline-focused numerical simulations.

Reductionist science and overly simplified

models do not suffice

Assuming that resources and environments are
not linked, are not complex, and are not subject to

dynamic changes is not a suitable approach to
manage the longer term, larger scale, well-being
of society (Sterman 2001, 2002). Normal reduction-
ist scientific approaches are insufficient in the face
of the complexity and uncertainties associated with
natural resources and environments; instead, a
‘post-normal’ integrative science is needed that
acknowledges complexity and helps deal with
uncertainty (Funtowicz & Ravetz 1993). Later sec-
tions in this paper will expand on these issues, inclu-
ding the balancing of complexity and simplicity.

How can IEM be used?

IEM can help assemble the information that we
possess, and the knowledge that we believe to have,
in logical, structured constructs (numerical models
and databases). IEM can provide a dynamic, adap-
tive, integrated information framework for the
improved management of natural resources and
environments. Specifically, IEM can be used to:

† assemble and organize large sets of disparate
information, both quantitative and qualitative;

† transform information (e.g. convert, interpolate,
extrapolate, integrate, differentiate) to calculate
stocks, flows or other system properties;

† design monitoring networks to effectively
observe and quantify the stocks, flows, proper-
ties or qualities needed for the assessment of
natural resources and environments at different
scales;

† assess correlations and patterns in observations
(i.e. through statistical modelling tools);

† test causality of correlations, suggest testable
hypotheses, or help design or interpret field
experiments or natural experiments through
deterministic modelling approaches;

† explore effects of including or excluding given
processes, the equations by which they are rep-
resented, the parameters that control them, or
the spatial and temporal scales to which they
are applied;

† examine sensitivities, thresholds, tipping points,
and non-linear behaviours of system processes,
representative parameters, boundaries, or
system components;

† predict, forecast, or test results of system
changes, or explore different scenarios of change.

Generally, IEM can help devise and implement
better-considered, more useful, policies to help
manage landscapes and natural resources. IEM
has the potential to help communities mitigate and
adapt to increasingly complex environmental stres-
ses. IEM’s complexity arises because of the need to:

† consider, analyse, compile and synthesize mul-
tiple types and sources of information;
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† interpolate and extrapolate available information
across geographic landscapes;

† extrapolate information through time to make
forecasts (or hindcasts), or to fill in time gaps;

† transform information into more useful types of
information that lend themselves to policy
decision making;

† consider and assess assumptions, biases and
uncertainties that are inherent in constructed
models or information frameworks, and

† assess the potential impact of knowledge gaps
and low-probability high-impact events (i.e.
‘Black Swans’) in a given information frame-
work. Policy decisions and management actions
that seemed reasonable at the time of their being
taken have often proved problematic later on,
usually because longer term impacts, external
processes or cascading impacts were not suffi-
ciently considered.

Most of the complexity of IEM comes from the
manipulation, analysis, assessment, synthesis and
focusing of needed information for IEM construc-
tion and use. Additionally, complexities can arise
in the processes needed to assess whether IEM-
derived policy actions are useful, harmful or need
to be adapted to better meet societal needs. For
example, adaptive management (Ladson & Argent
2001; Argent 2009; Williams et al. 2009; Williams
& Brown 2012) and structured decision mak-
ing have started to be applied in the management
of natural resources, replacing ‘implement and
forget’ policy actions, and including stakeholders
throughout the policy study and decision process.
Adaptive staging, a form of adaptive management,
has also been proposed as a potential implemen-
tation strategy for nuclear waste disposal (McCom-
bie et al. 2003).

Why does simplification remain critical to

IEM progress and implementation?

Good management of resources and environments
requires (1) getting sufficient information of useful
quality and consistency, (2) assembling, transform-
ing and filtering the information to understand it
and to help make decisions, (3) getting feedback
on the simulated information and on the impact of
the implemented decisions, and, most importantly,
(4) getting community support for the entire pro-
cess. Simplification of system complexities and
dynamics is needed for many reasons, including
the following:

† monitoring and observation systems are restri-
cted by funding and by other practical constraints
– not everything can be observed or measured
everywhere at any time;

† technology and practical considerations may
also limit the acquisition and transmittal of mea-
surements as well as the computer-based proces-
sing, archiving and retrieval of information;

† humans have limits (and biases) in their cogni-
tive capabilities, in their abilities to sense, per-
ceive, retrieve and store information, in their
abilities to process and transform information
into knowledge and in their abilities to act on
their knowledge.

Additionally, simplification and shortcuts are essen-
tial to human behaviour. ‘Fast and frugal’ heuristics
are evolutionary and experience-based features
that, most of the time, provide essential highly effi-
cient guides for human behaviour and decision
making (Gigerenzer & Brighton 2009; Marewski
et al. 2010; Kruglanski & Gigerenzer 2011). Simpli-
fications and heuristics help us avoid the ‘paradox of
choice’ (Schwartz 2004): too much complexity or
too many choices can lead to paralysis in decision
making.

Lastly, but perhaps most importantly, a com-
monality of understanding and support is needed
at all phases of IEM studies, and especially for
IEM-derived decision making and implementa-
tion of management actions. A commonality of
understanding and support invariably implies that
the greater and differing understanding of many
individuals gets subsumed to a ‘minimum common
denominator’ of broadly accepted and explainable
knowledge. Analogous conclusions, pointing to the
benefits of ‘small’ system dynamics models (i.e.
relatively simple and easy to understand), were
reached by Ghaffarzadegan et al. (2011) in their
study on the use of models to address social policy
questions.

What are some downfalls or biases

related to simplification?

‘Simplification’ often represents evolutionary adap-
tation or learned or acquired behaviours that may
be expressed as human biases or heuristics. These
simplifying biases and heuristics allow human
management of complex processes, often with sur-
prising accuracy (Gigerenzer & Goldstein 1996;
Gigerenzer & Brighton 2009; Marewski et al.
2010). Nonetheless, simplification is not reality,
and may be especially poorly suited when confront-
ing modern issues that may have not been experi-
enced or were infrequently experienced in our
evolutionary or experiential past (Glynn 2014).
Simplification can lead to significant errors of man
or of machine, to wrong or misleading simulation
results or interpretations, to poor decision making.
Human over-reliance on intuitive thoughts and
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reactions can lead to highly biased and ineffective
decision making (Tversky & Kahneman 1974; Kah-
neman 2003a, 2003b, 2011). Similarly, lack of con-
sideration of low-probability high-impact events,
i.e. ‘Black Swans’, can also lead to poor decision
making (Taleb 2007).

Poor decision making, at least in the context
of a longer term or larger scale perspective, may
occur when there is a lack of immediate, sharply
distinguished, feedbacks at the level of the indi-
vidual or of a local (i.e. tightly knit) community;
for example, when human decisions or reactions
have subtle, large scale or delayed impacts on
resources and environments (Sterman 1994). It can
also occur when available feedbacks are over-
printed by more pressing needs (i.e. more immedi-
ate, more local), or by other often irrational con-
siderations (Gilbert 2011). Over-exploitation of
common resources (e.g. overfishing, groundwater
depletion) is a typical problem that can occur
(Hardin 1968; Ostrom et al. 2002). Poor choices
or judgments may also simply result from poor
human cognition of important aspects or processes
in complex ecosystems.

Deficient cognition, or lack of cognition, will
occur not only because of human memory limita-
tions or limitations of experience. It may also
occur because some important ecosystem com-
ponents are relatively hidden from us (e.g. ground-
water, microbes), or because we have natural
preferences to track biota or animate entities rather
than relatively inanimate entities. I suspect that
human cognition preferentially tracks, in decreas-
ing order of importance: (1) oneself, (2) other
humans, (3) other biota, (4) physical objects and
landscapes. On a parallel track, human cognition
is also probably adapted to recognize, in decreas-
ing order of importance: (1) immediate local
threats to human security (e.g. aggressive humans
or large animals, extreme weather), (2) basic day-
to-day resource needs and opportunities (food and
water), and (3) the potential of social relations that
enable our reproductive success, and help us get
respect or esteem. These needs are essential com-
ponents of Maslow’s theory of human motivation
or ‘hierarchy of needs’ (Maslow 1943; Koltko-
Rivera 2006).

What are some general human biases that

may occur in the application of IEM to

ecosystem management?

Our cognitive limitations and adaptive heuristics
are responsible for a multitude of human biases
that affect the functioning of our minds, our judg-
ments and actions. Here, however, I consider
some general human biases that may affect the

construction and application of IEM when seeking
to improve management of ecosystem resources
and environments. Because I am not trained in the
behavioural sciences, some of the biases listed
below are speculative, and reflect personal, non-
quantitative, observations.

The ‘temporal insensitivity’ bias

Humans are better at representing, understand-
ing and utilizing spatially distributed information
than time-distributed information. Spatial distri-
butions seem to be more frequently used, now
more than ever with the advent of the internet and
our increasingly connected world. Retrieving his-
torical or even older information about past con-
ditions often requires greater effort, or may be
impossible. Additionally, the uncertainties (and sur-
prises) associated with forecasts or future scena-
rios, and the lack of feedback and/or our personal
‘lack of skin’ in any long-term predictions (beyond
one or two generations, i.e. 20–40 years) tend
to limit actionable human interest in the distant
future. (By ‘lack of skin’, I mean the lack of a near–
immediate, bodily experienced, personal stake.)
The longer the timescale of the available (or mod-
elled) information, the lower the degree to which
scientists and society are able to easily appreciate,
understand and use the information to manage the
environment and natural resources. The fields of
system dynamics and industrial dynamics have
demonstrated the difficulties that human socie-
ties have in dealing with systems that have multi-
ple, complex, non-linear feedbacks even on the
relatively short management timescales of com-
panies and organizations (Forrester 1968, 1971,
1994). Longer delayed feedbacks make appropri-
ate societal responses even more difficult. Soci-
ety has generally not understood, or applied, the
fundamental reality that our environmental systems
and resources (e.g. watersheds, forests, ground-
water systems) have a diversity of lagged or
delayed responses that range from days to months,
years, decades, centuries, millennia and more. The
widely varying timescales of ecosystem processes
do not generally harmonize with political cycles,
or with timescales of societal decision making and
feedback. This does not mean that considering
long-term ecosystem dynamics is not important,
especially when making major societal investments.
Following local weather predictions is important to
us on a daily basis because it helps us dress appro-
priately, or tells us of extreme weather events that
may be coming towards us. Considering hydro-
logical and climatic variability, or the risk of
extreme events, on the timescale of decades to cen-
turies or millennia may also be important if we
want to make smart investments in infrastructure
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(e.g. installing or removing dams and reservoirs,
installing tsunami protection barriers of appropriate
height) or in relatively rigid legal compacts between
communities or countries (e.g. the Colorado River
Compact 1922).

The ‘steady-state’ bias

This bias is related to the previous one. As we
observe the world around us, I believe that we are
programmed to seek, and see, stability and sim-
plicity, and to extrapolate current knowledge of
active processes and their rates into the future. This
makes it easier for us to make decisions in response
to short-term imperatives. The historical prevalence
of statist-, equilibrium-, or steady-state-oriented
perceptions and interpretations of ecosystem pro-
cesses in the scientific literature (and therefore in
management and policy applications) may also
partly result from discomfort or avoidance in think-
ing about our ultimate demise. Improved man-
agement of our ecosystems increasingly requires
dynamic models, in which steady states may occur
and persist for some length of time, and may some-
times recur over longer timescales, but are generally
intrinsically unstable because of the many different
sources of disturbances or perturbations that can
occur, of either natural or human origin (Botkin &
Sobel 1975; Botkin 2012). ‘Non-stationarity’ (Milly
et al. 2008; Hirsch 2011) and the increasing real-
ization that ecosystems are highly dynamic in
all their characteristics and can easily exceed pre-
viously considered ‘historical ranges of variation’,
have important implications for the management
of our environment and natural resources (Betan-
court 2012).

The ‘man v. nature’ bias

Our sense of exceptionalism often leads us to con-
sider ourselves, and our actions, as removed from
the rest of the natural world. ‘Natural’ systems have
been studied and modelled as if they were isolated
from human systems and the built environment
(Botkin 2000). The concept of the ‘independent
observer’ and the development of the scientific
method inherently assume that we are removed
from nature. Under many conditions, for example,
for small-scale simple systems observed over short
time frames, this is not a problem. It is a problem,
however, when modelling the larger scale, longer
term, integrated processes of complex dynamic
ecosystems. Conceptual and numerical models of
these systems, and generally of the environment
and its resources, have rarely considered the com-
plexity of human behaviour and human decisions,
and their full impacts on the environment and its
resources. Such models often do not include

humans and their behaviour. This artificial separ-
ation has negatively impacted our ability to model
and manage the environment and its resources
(Force & Machlis 1997; Machlis et al. 1997;
Machlis & McNutt 2010).

The ‘anthropomorphic’ bias

Human nature relates best to itself, and commonly
seeks to anthropomorphize entities that it does not
understand well, including computers and their
associated technology (Nass & Moon 2000). Com-
puter ‘personalities’ that relate to human personal-
ities can be created relatively easily and humans
respond socially to technologies (Nass et al.
1995). I suspect that integrated models, as complex
multi-dimensional dynamic information frame-
works, will not escape our tendency for personifica-
tion, especially if they become accessible to the
average person and acquire ‘black box’ or ‘artificial
intelligence’ characteristics. Their predictions or
output may be treated like the prophecies of the
Oracle of Delphi: that is, generally held in great
respect by many believers, subject to obscure pro-
nouncements that frequently need translation from
acolytes and high priests, occasionally amenable
to providing additional prophetic details (or more
obscure pronouncements) when consulted again
with suitable accompanying ‘gifts’. It is likely
that integrated models will be both shaped and
related to as if they were human entities. Hopefully,
they will provide a better record of transparency
and more widely understood meaning than the
Oracle of Delphi. (There is no doubt though that
the Oracle was considered by society as a useful
source of wisdom and prophecy: she is believed
to have been in place for 12 centuries, from
800 bce to 395 ce; Wikipedia 2015a).

The ‘single species’ bias

This bias is related to our need for simplicity. Man-
agement actions, policies and regulations have
often focused on single species, disregarding their
interactions or dependencies on other species. Eco-
system management has often ignored the com-
plexities of food webs and focused on individual
species, or on a short list of species of interest: threa-
tened and endangered species, ‘keystone’ species or
‘indicator’ species. Charismatic species have often
received greater study than species that did not
appeal as much to the public, or were not as visible
(or were not as scary). Less charismatic or less
visible species, however, often have great functional
relevance in ecosystem processes. As illustrated in
the management of sea otters and many other threa-
tened species, ignoring species–species interac-
tions and the need for monitoring and modelling
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multiple populations has often led species manage-
ment actions astray (Botkin 2012). Despite many
studies on large apex predators, the trophic cascades
and ecosystem processes that they often control or
influence remain areas of much needed study
(Ripple et al. 2014).

Cognitive perceptions and the ‘visible is

credible’ bias

Vision is such an active sense that it may over-
whelm our other cognitive inputs, and possibly
also diminish our ability for conscious logical
thought (Glynn 2014). Our senses include four other
‘classic’ receptor senses (hearing, smell, taste, touch
or skin sensation), as well as many others, including
equilibrioception (balance, acceleration, gravity),
proprioception (kinesthetic sense), thermoception
(heat flux), chronoception (time), nociception
(pain) and other internal ‘interoception’ and chemo-
ception senses. Vision is a privileged sense that
allows near–immediate human response to impact-
ful events. It allows quick assessments of situations.
People near us are able to immediately share our
visual perceptions. In contrast, other senses (1)
involve internal perceptions that are not as easily
shared, and/or (2) are associated with greater trans-
mittal delays between emission and reception of the
sensory signal (e.g. hearing), and/or (3) require
greater time for reception and human processing
before action can be taken (e.g. smell). It is no coin-
cidence that vision is a most important sense,
especially when it comes to the shaping of human
beliefs. ‘To see is to believe’ is a common human
expression. Conversely, the invisible requires a
greater effort of belief, or of education and knowl-
edge, and consequently often ends up unrepresented
in our mental models, in our conceptual models, and
therefore in our numerical models.

Lack of accounting for groundwater processes,
and the regulation and management of groundwater
and surface water resources as if they were separate
resources, are pervasive problems (Winter et al.
1999) that, according to Glennon (2002), have con-
tributed to poor management of groundwater
resources in several regions of the USA. As another
example, integrated environmental watershed mod-
els of water, sediment and nutrient inputs to the
Chesapeake Bay have, generally, inadequately rep-
resented groundwater processes. The models have
not accounted for the decadal timescales of ground-
water processes (Sanford & Pope 2013), or for the
decadal to millennial timescales of sediment pro-
cesses (Pizzuto et al. 2014). As a result, the IEM
watershed models for the Chesapeake Bay water-
shed have, for the most part, ignored the response
times required for best management practices and

other efforts to limit sediment and nutrient transport
to the Bay.

The ‘creeping normality’ bias

This is a bias described by Jared Diamond in his
study on the collapse of human societies (Diamond
2004). It is also sometimes referred to as the ‘boil-
ing frog syndrome’ (Wikipedia 2015b). Humans are
conditioned to respond quickly to immediate, clear
and specific risks to themselves and their present
communities. Individuals are not conditioned to
make decisions that impact them, their descendants,
or society in general (present and especially future)
in response to diffuse risks. By diffuse risks, I mean
risks that are either not perceived or at best per-
ceived as diffuse by individuals because the risks
(1) increase slowly or are spread over a longer time-
frame, (2) occur at a large spatial scale without
clearly noticeable local feedbacks or (3) are buried
by uncertainty or variability or diluted by too
many other factors affecting human perception.
Integrated modelling (IM), in many ways, seeks to
upset this conditioned, evolutionary, reality of
human perception and response. IM by its very
nature seeks to broaden human perception, while
still aiming for consequent action. IM often seeks
to simulate a greater number or diversity of pro-
cesses than may be otherwise considered. In many
instances, it will provide information that does not
relate to immediate and local impacts, or that simu-
lates gradual changes or changes that may be other-
wise ‘buried away’ from human, or at least societal,
perception, and therefore from consequent action.

The ‘disciplinary’ biases

Biases relating to our disciplinary expertise, or to
the social communities or peer groups that we
associate with, are plentiful. These associations
are generally beneficial in that they help us
develop expertise and knowledge in specific areas,
and they also provide professional or personal
security that we would not have as isolated individ-
uals. However, these associations also have the
potential to create biases that can skew our perspec-
tives, our mental models, and therefore the way that
numerical models are assembled, interpreted and
applied or used. IEM does not escape from these
biases, but it does have the potential advantage of
bringing in a diversity of perspectives. IM seeks
and needs to provide broader and more integrated
perspectives for management or policy actions;
users of IM must be mindful of using the best poss-
ible disciplinary knowledge and expertise, while
being very open to different or alternative perspec-
tives. Ecosystems should not be studied and mod-
elled only by biologists with little training in the
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physical sciences, or by physical scientists with
little training in biology. Definition and quantifi-
cation of ecosystem functions and services, or
assessments of ecosystem health, clearly require
the engagement of a broad community. Economic
valuation of ecosystem services, or the construction
of trading frameworks for various ecosystem credit-
ing plans (e.g. wetland trading, nutrient trading,
carbon trading), offer examples of the breadth and
depth of interdisciplinary collaboration required
for useful applications of IEM. Ultimately, however,
broad and diverse collaborations require a core
of common understanding, helped by the use of
common ontologies and semantics, but also by
useful and appropriate simplifications.

The ‘dominant stature’ bias

This bias reflects the common occurrence where
more aggressive individuals, justifiably or not, seek
to assert their leadership or dominance, while others,
justifiably or not, follow their lead. Relatively sim-
ilar behaviour can be observed in the leadership/
power relationships of wolf packs and ungulate
herds. In human gatherings, a widely acknowledged
expert or leader may persuade, or subdue, less
aggressive participants into accepting an opinion
or course of action, sometimes regardless of appro-
priate justification, i.e. without the requisite level of
expertise, knowledge and logical thinking needed
from both the leader(s) and the followers. There
are excellent reasons for this behaviour in many
situations. However, the breadth of reasoned partici-
pation required by IEM will generally argue for
minimizing, or at least controlling, such behaviour.
The ‘dominant stature’ bias is related to our ten-
dency to follow people who exhibit confidence,
even when unwarranted: Chabris & Simons (2010)
call this the ‘illusion of confidence’.

The ‘managed expectations’ bias

The ‘managed expectations’ bias relates to the com-
mon need that scientists, policy makers and other
professionals have to present their results and con-
clusions in ways that are more likely to be accepted
by their colleagues and/or in a form that avoids jeo-
pardy to their employment (i.e. their security and
access to food and other resources, the bottom
levels of Maslow’s ‘hierarchy of needs’). There
are probably many psychological factors at play in
this general bias, both at the level of the individual
and his/her relations with a peer group. To take
one well-known example, the ‘loss aversion’ heuris-
tic (Kahneman 2011) affects our ability to have the
most objective judgments. Our high sensitivity to
avoidance of potential losses is what causes stock-
holders to sell their stocks more often than not at

the bottom of a market swing. Similarly, weather
newscasters often announce with great confidence
that a major snowstorm is most likely the next
day, when the greater probability is that it will not
occur. The newscaster (and perhaps also the forecas-
ter) is managing societal expectations, and minimiz-
ing personal risk to continued employment, by
over-weighting the likelihood of a negative event.
Scientists are increasingly expected, beyond their
duties, to seek objective knowledge, to be careful
communicators of risk and to be sensitive to the
management of public expectations. This reality is
illustrated by the recent trial and conviction of
seven Italian scientists to six-year prison terms
because of their insufficient attention to public sen-
sitivities (Cartlidge 2012; Marzocchi 2012; Boschi
2013). Managing expectations and the public’s
perception to risks and its need to find culprits to
blame (or scapegoats: a basic social need according
to Girardian anthropology, e.g. Girard 1987) is likely
to affect how IEM results are used and presented to a
broader public. It also has the potential to affect what
science is conducted and presented by scientists.

The ‘confirmation’ bias

This type of bias, also referred to as ‘myside’ bias, is
one of our most important biases. It allows us to
quickly, and often efficiently, pursue or act on our
beliefs. It also leads us to use, and filter, obser-
vations that seek to confirm our pre-existing mental
models or conceptual models, rather than to try to
discredit those models (Bacon 1620; Nickerson
1998). Confirmation bias minimizes the ‘cognitive
dissonance’ between our existing beliefs and our
behaviours and cognitive inputs: we tend to align
our behaviour, and the information that we con-
sider, with our pre-existing beliefs (Festinger 1957).
Confirmation bias is likely to mislead us in the
design and use of IEM in cases where behavioural
responses have not been sufficiently conditioned
from feedbacks and experiential learning, gained
either earlier in our lives or in the human evolution-
ary past. We need to be cognizant and vigilant of a
natural tendency to indulge in confirmation bias. A
conscious effort to disprove or rigorously test our
conceptual models, and our constructed IEM frame-
works, is needed in our pursuit of improved ecosys-
tem management actions for broad societal benefits.

A polymorphous complexity of human

biases and limitations

There is a large literature of knowledge that relates
to memory biases, human heuristics, social biases
and the limits of our attention and logical thinking.
Many of these biases and human limitations have
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been discovered through the examination of human
rationality and the boundaries and conditions that
affect its application (Simon 1990). Discussions
of the many memory biases, cognitive biases and
heuristic strategies that commonly affect human
thinking and decision making can be found in text-
books such as Baron (2006); reference books such
as Stanovich (2010); popular books such as Kahne-
man (2011), Ariely (2010) and Chabris & Simons
(2010); scientific reviews aimed at applications
such as medical diagnosis (Anderson 2012) or fore-
casting (Stewart 2001), and on the internet (e.g.
Wikipedia 2015c, d). While biases and heuristics
relate to the behaviour of individuals, social forces
strongly affect them and end up also controlling
the behaviour of social groups. Ariely (2010)
gives the example of a small group that goes to
dinner together, where each person sequentially
orders their preference. He argues that the only
person that undoubtedly orders what he or she
desires is the first one to place their order. All
others are generally affected by wanting to either
support ordering decisions already made by others,
or differentiate themselves by ordering something
different. ‘Framing’ biases affect our judgments,
not only through the company we keep, or the
environments and habitats that house us, but also
through the way information is presented to us.
Even as highly educated individuals, we are more
likely to decide in favour of a course of action
when told that it has a 70% chance of success,
than when told that it has a 30% chance of failure
(Kahneman 2011).

Framing ourselves as scientists ‘conducting

objective science’ ignores the frequent

subjectivity of our judgments

Such judgments are often called into play, assuming
that we are not complete robots and that we serve
some purpose beyond that of inanimate computers.
Instead of deluding ourselves through an ‘objectiv-
ity frame’, we would be better served acknowled-
ging that we often make subjective judgments in
the pursuit of science. We should strive to discern,
examine and understand our biases and subjectivity,
and take appropriate countermeasures if needed. As
Stanovich & West (2003, p. 171) state:

People assess probabilities incorrectly, they display
confirmation bias, they test hypotheses inefficiently,
they violate the axioms of utility theory, they do not
properly calibrate degrees of belief, they overproject
their own opinions onto others, they display illogical
framing effects, they uneconomically honor sunk
costs, they allow prior knowledge to become impli-
cated in deductive reasoning, and they display numer-
ous other information processing biases.

Francis Bacon (1620) similarly realized that human
minds distort reality when he introduced his clas-
sification of the ‘idols of the mind’: (1) the ‘idols
of the tribe’ that innately affect all human beings;
(2) the ‘idols of the cave’ that distinctively mould
individuals (e.g. through their experiences or edu-
cation); (3) the ‘idols of the market place’ that
reflect the distortions of human communications;
and (4) the ‘idols of the theatre’ that impose falsely
constraining philosophies or mythologies. Scien-
tists are not immune from these ‘idols of the
mind’, especially when they remain unperceived
and unacknowledged.

The ‘eye of reality’: a frame for knowledge

simplicity, complexity and uncertainty

Human biases and limitations are most likely to
affect, by being harder to counteract, our evalu-
ations of uncertain, complex, dynamic systems,
rather than our evaluations of simpler systems con-
taining mostly factual, static, information. Finding
the right level of simplification or of representation
for different systems under different circumstances
means estimating the level of unrepresented (or
unknown) complexity. In terms of visual artistry, it
means not just understanding the ‘positive space’
occupied by simulation model(s) and associated
data, it also means having a reasonable level of
understanding of the ‘negative space’ that is unoccu-
pied by a modelling or information construct, i.e. the
assumptions and other simplifications that have been
made, the reality that is not represented or simulated.

As human beings, we may distinguish ourselves
from other animal species through our propensity to
derive abstract simplifications and symbolisms of
reality. Although these abstract ‘simple’ construc-
tions can sometimes lead us astray (Stanovich
2013), our mental models and conceptual frames
provide essential guides, often unconsciously used,
for our thinking and behaviour. Figure 1 illustrates
what I call the ‘eye of reality’, a reference frame
that may be useful in thinking about and classifying
our human pursuit of knowledge. My frame depicts
information that is:

(1) known to be known, or that can at least be
easily, logically or factually determined; or

(2) known to be unknown – information that is
indistinctly sensed or perceived or that is not
easily available or determined; or

(3) part of the ‘unknown unknowns’ – unknown
information that we may really need but that
we do not even know that we need.

The terminology of knowns and unknowns
referred to above was presented by Donald Rums-
feld, US Secretary of Defense, at a news briefing
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in February 2002 (Wikipedia 2015e). However,
there are many antecedents to Rumsfeld’s pro-
nouncement going back all the way to the saying
‘I know that I know nothing’, i.e. the Socratic
Paradox, attributed to Plato’s accounts of the
Greek philosopher (Wikipedia 2015f ), which may
in turn have originated from the Oracle of Delphi
(Wikipedia 2015g).

The white core at the centre of the image rep-
resents the most objective and factual knowledge
(or information) that we either have or can obtain
relatively easily, for example, by quantitative moni-
toring of our resources and environments, or by
applying the scientific method in its strictest form
(Popper 1959, 1972), i.e. by seeking to refute a
single hypothesis at a time through experiments or
logical deductions. ‘Normal’ (as opposed to ‘post-
normal’) science is part of this white core.

The irregular, star-shaped, blue line around the
white core in Figure 1 represents the fact that we
all make choices (often unconsciously) as to what
hypotheses to test, what properties or entities to
notice, observe or quantify, what expertise or fields
of study to pursue, what minds to prod. Often our
decisions, conscious or unconscious, are made on

the basis of vague perceptions, feelings or intuitions
about what might be profitable pursuits in our seek-
ing to explore the ‘known unknowns’, the speckled
and striped brownish area in our diagram. This area
of gaseous and increasingly unsubstantive materials
represents our decreasing base of knowledge and
perceptions as we move away from our white,
most factual, core of information. Last but not
least, the outer black area in the diagram represents
the ‘unknown unknowns’, the dark matter that we
can perhaps reduce through experience but, by defi-
nition, that we can never uncover (at least in the
immediate).

How can our ‘eye of reality’ frame be used to
address the human challenges of IEM? There are
no easy, universal solutions. I would argue that
explicitly recognizing and better defining the par-
titions between the three areas of knowledge are
essential, as are attempts to recognize and analyse
our human biases, limitations and heuristics that
influence our judgments and actions, and invariably
also affect our intuitions and creative thoughts.
These intuitions and creative thoughts serve as
whispered introductions to the ‘known unknowns’,
and possibly eventually to the ‘unknown unknowns’.

Fig. 1. The ‘eye of reality’: a representation of knowledge, perceptions, uncertainties and unknowns based on a
photograph taken from the Hubble Space Telescope by the National Aeronautics and Space Administration (NASA) of
an exploding Red Giant star, a dying unstable star that periodically ‘blows a bubble’, a nearly spherical shell of gas
(http://www.nasa.gov/multimedia/imagegallery/image_feature_2302.html). Image used by permission from NASA
(http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html).
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Effectively using these ‘whispers’ requires cogni-
zance and understanding of our human biases and
limitations, their evolutionary, individual and/or
societal origins, and a comparison with the issues
and systems at hand. This understanding is critical.
Are the ‘whispers’ helpful and appropriate in evalu-
ating or thinking about a particular issue or system?
Or do they need to be counteracted?

Addressing the human challenges of IEM

Devising methods and processes to address the
human challenges of IEM, and the complexities
and uncertainties of the studied systems and issues,
is a major area of study. I can only provide initial
suggestions that may be helpful in addressing these
challenges, beyond the first steps, which are to take
greater, explicit, cognizance of human biases and
behaviours and to use appropriate knowledge
frames, such as ‘the eye of reality’ discussed above.

Appropriate simplicity, adaptive

compensations

The efficiency of simplicity is compelling. Simpli-
city breeds clear understanding by a large commu-
nity, efficiency of study and minimization of short-
term costs. Management and policy actions are gen-
erally not taken if a simple enough understanding
cannot be achieved by a non-specialist community.
Integrated modelling will necessarily breed com-
plexity. The success of IEM is dependent on its
ability to model complex and multiple processes;
but it is also strongly dependent on being able to
reduce that complexity into simple enough descrip-
tions and processes that can be clearly understood
by a large community, and that will therefore lead
to implementation of reasonable management and
policy actions.

The downside of simplicity is that it includes
and/or engenders human (or technical) biases, over-
sights or errors that may need to be compensated for.
Adaptive management, sometimes simply called
‘learning by doing’, theoretically provides an itera-
tive way to evaluate information, outline expec-
tations and take actions in the face of uncertainty
and complexity, while allowing for later modifi-
cations of the actions taken or policies developed as
more information and knowledge accrue. As pointed
out earlier, adaptive management supported by
IEM can improve the management of our natural
resources and environments. Adaptive management
is not a panacea that will be suitable for all types
of situations (Norton & Reckhow 2008; Craig &
Ruhl 2014). It will not be a suitable strategy for
situations where follow-through monitoring, evalu-
ations and adaptive actions are unlikely. Ethical

or legal reasons can also prevent its use. Adaptive
management (and the use of IEM) may also fail in
managing systems that have lagged or highly non-
linear responses, that have too high a complexity
or unobservable causative drivers and feedbacks,
or that have threshold responses from which there
may be no recovery.

Structured processes to address

complexity

The intrinsic complexity of integrated modelling is
unavoidable. It requires adequate understanding
and simulation of a wide diversity of processes
studied (or monitored) by a wide diversity of com-
munities. It involves simulation of a web of interde-
pendent cascading processes that sometimes have
threshold behaviours or other non-linear beha-
viours, and where the importance, or lack of impor-
tance, of any given process in the simulation may be
something that varies depending on system con-
ditions, spatial and temporal variations, and the con-
sideration (or lack thereof) of other processes. The
key to addressing and managing this complexity is
to structure, layer, compartmentalize and abstract
it in a scalable manner (i.e. simplify it). There are
multiple reasons for doing this, which include not
only the technical traceability, accountability and
use of IEM, but also our fundamental human
needs for appropriate and scalable simplicity in
visualizing, understanding and sharing the infor-
mation and knowledge provided by IEM amongst
a user community. Additionally, structured com-
plexity and scalable simplicity/abstraction may
help quicken understanding and response to unanti-
cipated impacts from decisions or actions taken as a
result of an IEM process.

Another way of keeping complexity manageable
and understandable is to build it gradually over time
into integrated models, perhaps by building on a
series of simple models. Alternatively, a more pro-
blematic approach is to reduce complexity, that is,
to develop general, highly inclusive, complex mod-
els, and to reduce their complexity from the top
down. While this approach may lead to significant
errors and problems related to a lack of detailed
understanding of the models, it has the merit of
allowing for the simulation of processes that might
not have been accounted for in models built from
the bottom up. Modelling results from this top-down
approach must be carefully considered to avoid
their misuse.

Participatory processes

Education of the scientific community and of the
wider public to enable them to achieve a greater
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level of comfort and understanding of the capabili-
ties, and limits, of IEM is also needed. Learning
may be enhanced through the advent and propa-
gation of new visualization tools, gaming methods
and other learning technologies. Perhaps most
importantly, education of a wider community can
be achieved by encouraging their greater partici-
pation in IEM (Voinov & Gaddis 2008; Voinov &
Bousquet 2010) in the assembly and use of models
to explore and foster understanding of complex
systems, or to build scenarios and modelling fore-
casts (Alcamo 2008; Alcamo & Henrichs 2008;
Pahl-wostl 2008). Mediated modelling (Van den
Belt 2004), also known as cooperative modelling or
participatory modelling, can often provide a useful,
structured approach to engage stakeholders and the
interested public, together with scientists and other
professionals, in helping manage resources and
environments. Cockerill et al. (2006) provide an
excellent account of the strengths and weaknesses
of a cooperative modelling project that was used
to inform and help select water management options
for the Middle Rio Grande (MRG) basin in New
Mexico. The cooperative modelling simulated a
wide diversity of hydrological and ecosystem pro-
cesses, including human infrastructure and the
impacts of human activities on the landscape. The
model and water management scenarios developed
helped gain public and stakeholder understanding
of the complex system dynamics in the basin and
of the trade-offs involved in different management
options. The modelling effort ultimately informed
the water management plan developed for the
MRG basin in 2004 (MRG Water Assembly 2004).

Lessons from a painting: structuring

community interactions, using new modes of

representation, finding the missing, seeking

the ‘unknowns’

Jakeman et al. (2008, p. 4) state:

Modelling should be about the systematic organiza-
tion of data, assumptions and knowledge for a spe-
cific purpose. In the environmental domain the main
reasons for modelling are for knowledge generation
and sharing in order to inform a decision that could
be for operational management or strategic policy
development and implementation.

Clearly, human behaviour and judgment enter the
process of assembling and using models. Conse-
quently, just as it is important to build structured,
scalable simplicity and abstraction in IEM tools
and representations, it is also important to structure
and systematically trace and account for human and
social interactions during the assembly and use of
IEM. These human and social interactions are in-
herently complex. They include: (1) stakeholder

engagement and learning processes; (2) the account-
ing and management of multiple perspectives or
human information sources; (3) the creative
exploration of individual intuitions or perceptions;
(4) the recognition, understanding and possible
counteraction of human biases and limitations; and
(5) decision trees or other methods to trace the con-
struction, evolution and use of IEM.

We should consider using a greater diversity of
media and forms of communication and represen-
tation to creatively explore our conceptual models,
frames of reference and our simplifications in the
pursuit of the ‘known unknowns’ and the ‘unknown
unknowns’ that ideally should be considered in
IEM. Here, I use a painting by the American
neo-impressionist painter Maurice Prendergast to
illustrate some points about the structuring of com-
munity and social interactions and the building and
use of integrated models (cf. Fig. 2). A painting rep-
resents an integrated expression of mind, experi-
ences and vision, sometimes conscious, sometimes
not; in other words, it has many of the character-
istics of an integrated model. The painting in
Figure 2 depicts a colourful community enjoying
what looks like a leisurely weekend day in the won-
derfully structured city of Venice. The painting
shows at least three bridges and a multitude of build-
ings, located alongside the Venetian lagoon, that
share similar architectural designs and height and
width constraints while avoiding blandness of uni-
formity. An analogy can be drawn here with the
modular structures and connection standards of
IEM. There is a sense of purpose in the movements
of the crowd, as most (but not all) people seem to be
moving away from the painter, towards some
common objective or attractor. The painting,
through its depiction of Venice and its ordered com-
munity, celebrates the spirit of human enterprise and
organization. Can IEM achieve a similar spirit of
purpose, enterprise and organization?

Now, what is the missing from the information
frame of Figure 2? What is the ‘negative space’
unrepresented but perhaps defined by the painting?
The incomplete outline of a person in the lower
right is a symbol of missing information and knowl-
edge. There seems to be a lack of diversity in the
social classes, professions, origins and other charac-
teristics of the people represented. Does this mean
that the collective knowledge base of the commu-
nity has an impoverished diversity of perspectives?
Does the relative uniformity and beauty of their con-
structs, buildings and bridges point to an attractive
form of groupthink? Would a greater diversity of
people and constructions provide feedback mechan-
isms that could help the community and the city
avoid a future tragedy, such as one caused by climate
change, sea-level rise, and an overconcentration of
people and infrastructure in a vulnerable area?
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Planning for the future requires understanding past
conditions that might have given rise to currently
observed realities. Venice developed in marshlands
near the sea. The community initially took advan-
tage of the fishing opportunities provided by the
lagoon and the marshes, and also periodically
sought refuge from Germanic and Hun invasions.
As Venice grew in power and infrastructure, so
did its commerce and trade. Venice was positioned
in an ecotone, an ecologically rich transition area
between two biomes. Venice shows man’s taming
and use of this rich natural ecotone. Because it
creates bridges across spatial and temporal scales
and across knowledge domains, IEM also has a
form of ‘ecological richness’. IEM can also serve

as a monument to human enterprise and organiz-
ation. Both Venice and IEM, however, are suscep-
tible to possible failure, possibly made worse or
more catastrophic by initial achievements and by
groupthink (Janis 1972). Can/should we provide
resilience to our IEM constructs? Providing struc-
tured processes, transparent assumptions, shared
knowledge, structured communities and inclusive
participation is essential, but insufficient in testing
for resilience of IEM constructs.

Red teams storming

As exemplified – so far – by the history of Venice
and its frequent flooding, cities and communities

Fig. 2. Maurice Prendergast’s (1858–1924) painting of the Ponte della Paglia in Venice. The American
post-impressionist painter started the painting during his visit to Venice in 1898–1899 but extensively repainted and
completed it two decades later in 1922. Photograph provided, with permission to reproduce it in this article, by the
Phillips Collection, Washington DC (http://www.phillipscollection.org/research/american_art/artwork/
Prendergast-Ponte_Paglia.htm).
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have the potential to grow more resilient and/or to
adapt to changes when they are tested by disturb-
ances or perturbations of suitable magnitude. A
well-known hypothesis in ecology, the ‘Intermedi-
ate Disturbance Hypothesis’ (e.g. Connell 1978),
similarly suggests that smaller disturbances of
appropriate intermediate frequency can sometimes,
but not always, help avert much bigger catastrophes.
This hypothesis is still the subject of significant
debate (e.g. Fox 2013; Sheil & Burslem 2013).
By analogy, IEM frameworks, and the associated
understanding and prediction generated through
IEM, may also develop greater resiliency and confi-
dence if they are tested through the efforts of small
teams that question or seek to invalidate aspects or
assumptions related to a particular IEM effort and
its application. Groupthink is the enemy of IEM
resilience, honesty and transparency, and of the
effort to improve management of resource and envi-
ronment systems. There are several ways to avoid
groupthink in IEM. One way is to set up small
groups that compete to achieve some stated IEM
objectives. A problem with this approach is that it
probably requires metrics of success or of achieve-
ment to be made explicitly ahead of the competition,
when the end results needed may still be relatively
undefined. Another way is to conduct ‘in-process
reviews’ by independent panels that seek to assess
and constructively address IEM limitations. In my
view, the ‘constructionist’ expectations mean that
these panels may be insufficiently autonomous
and insufficiently vigorous in their identification,
testing and review of IEM vulnerabilities. A better
approach may be to create independent, innovative,
highly focused ‘red teams’ that actively fight group-
think and confirmation bias, and try to ‘storm’ the
IEM construct during its assembly, during interpret-
ation of its outputs or during discussions of its use or
applications. ‘Red Teaming’ is a structured testing
approach commonly used to test security proces-
ses in military and intelligence operations, or to
provide ‘alternative analyses’ of a given situation
(United Kingdom Ministry of Defence 2013).

Behavioural biogeosciences: a new area of

study supported by IEM

We are not well adapted to address resource and
environment issues that differ from those experi-
enced in our human evolutionary past, and/or that
have not provided frequent, sharply experienced
feedbacks at the level of the individual, or of a local
community. The behavioural sciences can help us
understand the extent to which our biases are the
result of our evolutionary adaptation to threats
and opportunities in our ecosystems. They can
tell us when those adaptations may not provide
the best solutions to managing our ecosystems

(and ourselves), for example, because the temporal
and spatial scales of reference, or the dynamics of
change, are outside of our natural adaptive capabili-
ties. The behavioural sciences can help us take
cognizance of, and when appropriate compensate
for, human limitations in our organized pursuit of
knowledge and its applications, including our con-
struction and use of IEM. These limitations extend
beyond the biases and heuristics that are discussed
in this paper, and beyond the natural, but sometimes
inappropriate, prioritizations of our human cogni-
tion and attention, as also mentioned earlier. The be-
havioural sciences can help us understand the
useful, but often biased, wellsprings of human intui-
tion, creativity and abstract thought. These are
characteristics of our species that help us explore
new frontiers of knowledge.

Understanding the full complexity and dynamics
of ecosystem processes, correctly assessing their
relative importance under different conditions, and
therefore their appropriate prioritizations and sim-
plifications during model construction and use,
should not be an area of study where only biologists
and ecologists participate while primarily focused
on biota and on the easily visible. Understanding
the dynamic complexity of the physical processes
affecting our habitats, our security and our access
to water, energy and minerals is equally important.
We need to quantitatively monitor those physical
processes, and also strive to quantitatively assess
or monitor the dynamics of food webs and biotic
populations. IEM can provide tools that help orga-
nize and maximize our knowledge of the biogeos-
ciences, while also taking into explicit account our
human needs, responses and biases. Study of the
‘behavioural biogeosciences’ needs to become an
integral part of IEM.

Expanding our knowledge beyond our current

human limitations: some additional thoughts

The suggestions provided above are complementary
to what we already know is important in the proper
construction and use of numerical models. The con-
struction, interpretation and application of IEM
should follow the standards of good modelling prac-
tice and scenario building (examples of some excel-
lent reviews are: Alcamo & Henrichs 2008; Crout
et al. 2008; Schmolke et al. 2010; Saltelli & Funto-
wicz 2014). Most importantly, models should be
considered as tools for gaining system understand-
ing, rather than revered as providing near-absolute
truth(s) once they happen to have been calibrated
and tested (i.e. considered ‘validated’ in some engi-
neering terminology). Models must also strike the
right balance between simplicity and complexity,
a balance that will probably vary depending on
modelling objectives and available knowledge.
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These principles have been well articulated in
several reviews and commentaries on the topic
(e.g. Konikow & Bredehoeft 1992; Bredehoeft &
Konikow 1993, 2012; Konikow 2011; Voss 2011a,
2011b; Nordstrom 2012). Models should also reflect
a balance between (1) the description of process
theory or knowledge and (2) available observations
and quantitative measurements. As Kirchner (2006,
p. 1) states:

. . . scientific progress will mostly be achieved through
the collision of theory and data, rather than through
increasingly elaborate and parameter-rich models that
may succeed as mathematical marionettes, dancing to
match the calibration data even if their underlying pre-
mises are unrealistic.

For IEM in particular, this means that we must put
greater emphasis on the most objective part of the
scientific enterprise – observations and monitor-
ing – even though we should still use models to
help organize available information and decide how,
when and where to possibly collect more. Human
biases and limitations affect our conceptual mod-
els that, together with practical realities, commonly
drive our observations and monitoring program-
mes. Statistical analyses, visualization and other
technology tools, when honestly and efficiently
used (Tufte 1983, 1990, 1997), may provide useful
techniques to help us take cognizance of our biases
and subjectivity, whether (1) organizing available
information or (2) transforming, agglomerating/
reducing or extending information through our
models. But fundamentally, improved management
of our natural resources and environments through
the use of IEM will depend on accessibility to well-
characterized, multi-scale, long-term, observations
and monitoring (Lovett et al. 2007; Keeling 2008;
Lins et al. 2010). Factual observations and moni-
toring are critical parts of the white core of our
‘eye of reality’.

Summary comments

Integrated Environmental Modelling (IEM) is
needed to help communities better manage the com-
plex and dynamic ecosystems that provide natural
resources and form their environments. IEM can
(1) help organize and transform basic information
(observations, quantitative measurements), (2) com-
plement (or test) existing knowledge, and (3) some-
times provide new knowledge or insights that
can help society manage its resources and environ-
ments. To be understandable, and therefore usable,
by a broad community, IEM will always involve
simplifications. Those simplifications will some-
times be consciously made, and sometimes will be
unconsciously decided. This paper has provided

examples of a diversity of human biases and heuris-
tics that may also affect how IEMs are assembled,
interpreted and applied.

Essentially, there are three steps that are needed
at every stage of the IEM construction, interpretation
and application process.

† First, all available information and knowledge
needs critical examination. In artistic terms,
this corresponds to examining the ‘positive
space’ occupied by our knowledge base.

† Second, conscious, critical examination is
required, to the extent possible, of what is not
included in an IEM construct or application.
This can be thought of as examining the ‘nega-
tive space’ of the IEM construct and application.

† Third, IEM developers, interpreters and users
need to take active cognizance, to the extent
possible, of the inherent human biases and heur-
istics that may have (1) affected their definitions
of positive and negative space, or (2) influenced
their information and knowledge base and, con-
sequently, any modelling constructs and uses.

There will always be ‘unknown unknowns’ that
surprise or confound IEM developers and users.
The three-step process suggested here seeks to
decrease the number of surprises, while maintaining
an attitude of watchful humility. Several other
specific suggestions may help address the human
challenges of IEM. These include:

(1) testing/auditing model predictions and man-
agement policies through an adaptive man-
agement iterative process, when feasible;

(2) using structured processes – such as progress-
ive complexity and/or progressive model
reduction – to test for appropriate simplicity,
and to maximize understanding and transpar-
ency of IEM constructs and use;

(3) participatory modelling to engage a diversity
of perspectives, and grow stakeholder and
expert understanding and use of IEM;

(4) developing structured processes to systemati-
cally account for human behaviour (includ-
ing human biases) and social interactions,
and to maximize effective use of IEM for
larger scale, longer term issues, i.e. for pro-
blems that humans are not naturally adapted
to address;

(5) using creative forms of communication and
representation to explore intuitions, concep-
tual models, simplifications and transient
frames of reference, in the pursuit of the
‘known unknowns’ and the ‘unknown
unknowns’;

(6) soliciting ‘red team’ raids at all stages of IEM
construction and use to elicit greater critical
thinking, and avoid (or at least control) group-
think and confirmation bias;
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(7) forming a new area of study in the ‘behav-
ioural biogeosciences’ that melds the knowl-
edge of behavioural scientists with that of
biologists and ecologists, and especially with
the expertise of physical scientists engaged
in the quantitative description and monitoring
of ecosystem processes;

(8) maximizing smart, efficient and honest prac-
tices, not only in modelling activities, but also
in information gathering (i.e. observations and
monitoring) and visualization.

Formal journal reviews by Nina Burkardt (USGS) and
Gerry Laniak (Environmental Protection Agency (EPA)),
editorial review by Andrew Riddick (British Geological
Survey (BGS)), and additional reviews by Lenny Konikow,
Mary Jo Baedecker and Kevin Breen of USGS, greatly
helped clarify and improve this manuscript. The author is
also grateful for the important comments, insights and
references provided by Ed Cokely (Michigan Technologi-
cal University), Olivier Delahaye (Central University of
Venezuela), Fred Glynn, Gary Shenk (EPA), Ferris
Webster (University of Delaware), and USGS colleagues
Ken Eng, Karl Haase, Dianna Hogan, Greg Noe and
Ward Sanford. The author retains full responsibility for
any errors of fact, expression or judgment. Any use of
trade, product or firm names in this publication is for
descriptive purposes only and does not imply endorsement
by the US Government.
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